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Abstract

Conventional cylindrical shells (made of isotropic materials) filled with or submerged in fluid have been analysed

historically by using closed-form solutions or by semi-analytical method. However, these shells suffer from a serious

disadvantage of not having sufficient damping, which is crucial in controlling the response of the structure during severe

vibrations. One practical way of reducing response levels is by using shells with viscoelastic treatment that would result in

increased damping. Previous work in this area was mostly limited to study problems whose mathematical formulation was

amenable to closed-form solution or semi-analytical method. In some cases researchers resorted to experimental studies.

Further, almost all previous studies were limited to lower circumferential modes and to first axial mode only. In the present

paper, the method proposed overcomes most of the limitations suffered by adopting the different approaches suggested

in literature. The method consists of treating fluid domain with Bessel function approach and shell domain based on

first-order shear deformation theory. The present approach obviates the discretisation of liquid domain thus reducing the

computation time. A computer program is developed based on the proposed method and results are compared with

previous works of various researchers. A good correlation is observed for all the case studies done. Hence, it is claimed that

the present approach is more universal for analysing fluid-filled or submerged shells or both. Detailed parametric studies

are carried out on both conventional and viscoelastic cylindrical shells.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Cylindrical shells, either fluid-filled or submerged in fluid, find wide engineering applications—liquid storage
tanks, liquid propellants and submarines, nuclear reactors, are some typical examples. The liquid has a
considerable effect on the free vibration behaviour of the structure and hence it is imperative to study the
influence of the same on the free vibration behaviour of the structure. Frequency analysis of the above systems
has been of a great interest and a challenging task. However, these conventional structures are more
vulnerable as they lack sufficient amount of damping in the system. It is felt that an attempt in the direction of
increasing damping values with the use of constrained layer damping would be highly beneficial. However,
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

[ADM] added mass matrix
[B] strain matrix
[D] elasticity matrix
E Young’s modulus
G shear modulus
g acceleration due to gravity
H height of liquid
In modified Bessel Function
[Ke] elemental stiffness matrix
m circumferential mode
[me] elemental mass matrix

N̂ trial functions
Ni shape functions
n axial mode
Ry radius of curvature in the y direction
s, y, z coordinate directions
tc thickness of core
tf individual thickness of facing
u, v, w displacement in the s, y, z directions,

respectively
n Poisson’s ratio
rs mass density of structure
rl mass density of liquid
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very little literature is available that treat viscoelastic shell structure interacting with fluid. Hence, in the
present paper, studies are done on viscoelastic cylindrical shells to learn the improvement in damping values.

The analysis of vertical fluid-filled cylindrical shells was done by Haroun [1] using finite element for shell
structure and boundary solution technique for fluid continuum. He had studied the seismic response of the
above structure by considering zeroth and first circumferential mode. Gupta and Hutchnison [2] studied the
problem by using semi-analytical finite-element approach for both fluid and shell domain. However, there is
not much literature available on viscoelastic fluid-filled shells except the one carried out by Ramasamy and
Ganesan [3]. They had analysed the system by using semi-analytical finite element for both structure and liquid
domain. In the present paper, liquid storage tank systems are modelled by using viscoelastic material. This
enabled to incorporate passive damping thus improving the dynamic characteristics of the structure. The
present paper deals with viscoelastic fluid-filled shells using the Bessel function approach suggested by Haroun
[1]. This approach consists of treating the shell with finite elements and liquid domain as a continuum thus in
turn resulting in the reduction of computational time. It is found that no researchers have used the Bessel
function approach to evaluate the natural frequencies of fluid-filled cylindrical shells for higher circumferential
modes. The present paper discusses the results on two oil containers that are dealt in the literature namely
short shell and long shell. The rationale behind the selection of above structures for the present study is to
enable the comparison of improvement in the damping values with respect to those published earlier in the
literature. However, the frequency can be normalised and compared to any other shell with different
dimensions by using the formula X ¼ rtRo2/E. According to best of the authors’ knowledge, there are no
studies on higher axial modes for these systems. The present method can be easily extended to analyse the
submerged cylindrical shells by changing the fluid potential. The results are found to correlate very well with
those published by Chiba [4]. According to the best of the authors’ knowledge literature on submerged vertical
viscoelastic shells is very limited. The present paper discusses the results for vertical viscoelastic submerged
cylindrical shells. Numerical results and detailed discussions are produced on the free vibration frequencies
and the loss factors of the constrained viscoelastic shell with isotropic and orthotropic facings.

2. Structural finite element

Ramasamy and Ganesan [3] have developed a general shell finite element for viscoelastic shells based on the
displacement field proposed by Wilkins et al. [5]. Fig. 1 shows the schematic of the viscoelastic shell structure,
consisting of a core viscoelastic layer sandwiched between two facing layers. The extreme layers of the shell are
called facings, and their individual thickness is denoted by tf. The central portion of the shell is a constrained
viscoelastic layer, which is called core, and the thickness of the same is denoted by tc.

For the core layer the displacement relations are assumed to be

uc ¼ uo þ zcs; vc ¼ vo þ zcy; wc ¼ wo, (1)
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Fig. 1. Schematics of a constrained viscoelastic layer.
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where uc, vc, and wc are the total displacements in the s, y, and z directions and are defined in terms of the
middle surface displacements uo, vo, and wo and the angles, cs and cy, are rotations of normal to the middle
surface in the meridional and circumferential directions. For the core these angles are denoted by cs, cy and
for the facings the angles are denoted as fs and fy. The displacement relations for outer and inner facing are,
respectively

ufo; ufi ¼ uo � hcs þ z� hð Þfs; vfo; vfi ¼ vo � hcy þ z� hð Þfy; wfo;wfi ¼ wo. (2)

Here ‘z’ denotes the distance from the middle surface of the shell, ‘h’ is half the core thickness and R is the
radius of the shell with respect to the axis. The strain–displacement relations for the core then become
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It is clear from Eqs. (3)–(13) that the degrees of freedom are u0, v0, w0, cs, cy, fs, and fy. In semi-analytical
formulation the circumferential variation of the seven variables (along y) are expressed as a Fourier series as
shown below:

u0

v0

w0

cs

cy

fs

fy

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼
X3
i¼1

X1
m¼0

ȳ
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where [ȳ] is defined as follows:
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where c ¼ cosmy, s ¼ sinmy, where ‘m’ is circumferential mode number, Ni are the shape functions used in
finite-element formulation given by N1 ¼ (x2�x)/2, N2 ¼ 1�x2, N3 ¼ (x2�x)/2 where x ¼ s/l, is the
isoparametric axial coordinate and l is the length of the element. The elemental displacement vector with
three nodes and seven degree of freedom per node is then:

uef g
T ¼ uo1; vo1;wo1;cs1;cy1;fs1;fy1; uo2; vo2;wo2;cs2; . . . ;wo3;cs3;cy3;fs3;fy3

	 

. (16)

The subscripts 1, 2 and 3 denote the three nodes. Now we can write the displacement vector as {u} ¼ [N]{ue}
where uf gT ¼ uc vc wc

	 

for the core and uf gT ¼ ufo=fi vfo=fi wfo=fi

	 

for the facings. The strain vectors

can be represented as �f g ¼ �ss �yy gsy gyz gsz

n o
¼ B½ � uef g where [B] is the strain–displacement matrix.

The elemental stiffness [Ke] and mass [me] matrices are then obtained from the following:
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Q̄ ¼ T½ �T Q½ � T½ � is the transformed elasticity matrix in global coordinates, [Q] is the elasticity matrix in the
material coordinates and [T] is the standard transformation matrix to convert to the global coordinates.
Numerical integration using Gauss quadrature scheme is carried out for Eq. (17). If the same material is used
for all the three layers, the above formulation will reduce to first-order shear deformation theory.
3. Fluid formulation

The finite-element method is very useful for analysing fluid domain with a great convenience in dealing with
fluid–structure interaction problems. However, for analysing the present problem, it is advantageous to treat
the liquid region as a continuum by the boundary solution technique and to model the elastic shell by finite
elements. In essence, the boundary solution technique consists of choosing a set of trial functions that satisfies,
the differential equation throughout the domain; and consequently, only the boundary conditions have to
be satisfied in an average integral sense. As the boundary solution technique involves only the boundary, the
number of unknowns can be much less than those of a standard finite-element analysis. However, the
boundary solution technique is limited to simple, homogeneous and linear problems for which suitable trial
functions can be identified.
3.1. Equations governing liquid motion

A typical geometry representation of the cylindrical shell filled with fluid is shown in Fig. 2. For irrotational
flow of an incompressible inviscid liquid, the velocity potential, f(r, y, z) satisfies the Laplace equation

r2f ¼ 0 (18)

in the region occupied by the liquid (0prpR, 0pyp2p, 0pzpH). Since, the velocity vector of the liquid is
the gradient of the velocity potential, the liquid-container boundary conditions can be expressed as follows.
z

L

H

R

tf + tc + tf

r

wet surface at the

bottom (S3)

wet surface of the
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Free surface (S1)

�

�

Fig. 2. Schematics of a cylindrical fluid-filled shell.
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At the rigid tank bottom, z ¼ 0, the liquid velocity in the vertical direction is zero

qf
qz
ðr; y; 0; tÞ ¼ 0. (19)

For the liquid adjacent to the wall of the elastic shell, r ¼ R, fluid must move radially with the same velocity
as the shell, hence

qf
qr
ðR; y; z; tÞ ¼

qw

qt
ðy; z; tÞ, (20)

where w(y, z, t) is the shell radial displacement.
At the liquid free surface z ¼ H+z(r, y, t), two boundary conditions must be imposed. The kinematic

condition states the fluid particle on the free surface will always remain on the free surface. The other
boundary condition specifies that the pressure on the free surface is zero. By considering only small-amplitude
waves, the free surface boundary conditions become

qf
qz
ðR; y; z; tÞ ¼

qx
qt
ðr; y; tÞ,

rl

qf
qt
ðR; y;H ; tÞ þ rlgxðr; y; tÞ ¼ 0, ð21Þ

where rl is mass density of liquid and ‘g’ is the acceleration due to gravity.
Following the variational formulation presented by Luke [6], the appropriate functional for a liquid having

a free surface is given by

Jcðf; xÞ ¼
Z t2
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Lcðf; xÞdt, (22)

where Lc is the complementary Lagrangian functional given by
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in which V indicates the volume occupied by the liquid. By requiring that the first variation of Jc be identically
zero, the Laplace equation and the linear boundary conditions can be obtained.

3.2. Variational formulation

On combining the above equations the variational functional for the free lateral vibration of the liquid-shell
system can be expressed as
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In the basic analysis, only impulsive pressure of the liquid is considered; and therefore, the shell vibrational
motion becomes independent of the free surface motion. Given this assumption, the functional J takes the
form

Jðu; v;w;f; xÞ ¼
Z t2

t1

Tð _u; _v; _wÞ �Uðu; v;wÞ �
rl

2
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Once a set of trial functions N̂iðr; y; zÞ, which are solutions of the Laplace equation, are identified, then one
can assume that

fðr; y; z; tÞ ¼
XI

i¼1

AiðtÞN̂iðr; y; zÞ, (26)
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where I is the number of trial functions, and N̂iðr; y; zÞ could be written as

N̂iðr; y; zÞ ¼
X1
n¼1

InðairÞ cos aizð Þ cos nyð Þ, (27)

where In is modified Bessel Function

ai ¼
ð2i � 1Þp

2H
and i ¼ 1; 2 . . . I . (28)

Chosen trial function satisfy the boundary conditions along S1 and along S3, then
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f
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1

2
fAgT½C�fAg, (29)

where [C] is a diagonal matrix whose elements are given by

Cii ¼
pRrlaiH

2
InðaiRÞI

0
nðaiRÞ. (30)

With the aid of the finite-element model of the shell and the expression of the velocity potential function, the
last term of J becomes

rl

Z
S2

_wfds ¼ f _qgT½Ĉ�fAg. (31)

Inserting these equations into the variational functional, and applying the variational operator yields

½Ms�f €qg þ ½Ks�fqg þ ½Ĉ�f _Ag ¼ f0g,

½C�fAg � ½Ĉ�Tf _qg ¼ f0g. ð32Þ

Since the matrix [C] is non-singular

fAg ¼ ½C��1½Ĉ�Tf _qg (33)

substituting Eq. (33) into Eq. (32) yields

½Ms�f €qg þ ½Ks�fqg þ ½Ĉ�½C�
�1½Ĉ�Tf €qg ¼ f0g,

ð½Ms� þ ½ADM�Þf €qg þ ½Ks�fqg ¼ f0g, ð34Þ

where [ADM] is added mass matrix due to the effect of the liquid. The matrix [ADM] is symmetric and
partially complete. Eq. (34) is solved by using simultaneous iteration to extract complex eigenvalues. These
eigenvalues are complex in nature as viscoelastic material properties are taken into account. The square root
of real part of the complex eigenvalue gives natural frequency and the ratio of the imaginary to real part of the
eigenvalue gives the corresponding loss factor.

The present methodology is extended to submerged shells where subsequent change in spatial velocity
potential is made by discarding the modified first kind of Bessel function In and by including Kn in Eq. (27) as
it must be regular at extreme radius. It should also be noted that both kinds of Bessel functions should be
considered for submerged fluid-filled shells.

4. Results and discussions

4.1. Fluid-filled viscoelastic shells

4.1.1. Validation

The frequency analysis of cylindrical shells filled with fluid can be carried out by using semi-analytical finite
element for structure and Bessel function approach for fluid domain. This kind of approach is more efficient
compared to the usage of semi-analytical finite-element approach for both structure and fluid. Hence in the
present paper, a study is done on viscoelastic fluid-filled shells using this approach and results obtained
are compared with those of Ramasamy and Ganesan [3]. The analysis is carried out for a fully filled short
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Glass/Epoxy shell with water and whose dimensions are R ¼ 18.29, L ¼ 12.2, t ¼ 0.0254m. The core is
assumed to be made of PVC and its properties are given in the Appendix A. It is assumed that these properties
are independent of frequency and temperature. The shell structure is discretised by using 10 finite elements in
the axial direction. Ten number of trial functions (N̂) were used for analysing liquid domain. The structure is
clamped at one end while the other end is free. Table 1 shows the results of a Glass/Epoxy shell with fibre
orientation in the axial direction. As can be seen from Table 1, the correlation between the results is good.
Viscoelastic shells with circumferential fibre orientation were also analysed and the results are compared with
those of Ramasamy et al. in Table 2 and the correlation observed is very good.
4.1.2. Studies on isotropic short and tall shell

The variation of frequency (Hz) and loss factor of a mild steel tank along the circumferential modes for
different tc/tf (core to facing thickness ratios) ratios is discussed. Fig. 3 shows the variation of frequency versus
circumferential mode number of short half-filled and fully filled shells. It is observed from the graph that at
lower circumferential modes, for a given mode number, the frequency decreases as the tc/tf ratio increases. In
general for the shell vibration at lower modes, the membrane effect will be predominant. In contrast, at higher
Table 1

Comparison of the natural frequencies (Hz) of a fully filled short Glass/Epoxy shell with fibre angle 01

m Present approach Ramasamy and Ganesan [3]

Frequency (Hz) Loss factor Frequency (Hz) Loss factor

tc/tf ¼ 1 tc/tf ¼ 1 tc/tf ¼ 1 tc/tf ¼ 1

1 1.34 0.0034 1.34 0.0031

2 1.20 0.0021 1.21 0.0020

3 1.02 0.0016 1.01 0.0015

4 0.86 0.0015 0.86 0.0014

5 0.75 0.0016 0.75 0.0015

6 0.65 0.0017 0.65 0.0016

7 0.58 0.0019 0.58 0.0018

8 0.53 0.0024 0.53 0.0022

9 0.49 0.0031 0.49 0.0029

10 0.48 0.0045 0.48 0.0041

Table 2

Comparison of the natural frequencies (Hz) of fully filled a short Glass/Epoxy shell with fibre angle 901

m Present approach Ramasamy and Ganesan [3]

Frequency (Hz) Loss factor Frequency (Hz) Loss factor

tc/tf ¼ 1 tc/tf ¼ 1 tc/tf ¼ 1 tc/tf ¼ 1

1 2.17 0.0004 2.17 0.0004

2 1.45 0.0005 1.45 0.0004

3 1.04 0.0005 1.04 0.0005

4 0.79 0.0006 0.79 0.0006

5 0.63 0.0009 0.63 0.0008

6 0.52 0.0019 0.52 0.0017

7 0.47 0.0051 0.47 0.0046

8 0.46 0.0114 0.46 0.0103

9 0.49 0.0200 0.50 0.0181

10 0.56 0.0290 0.57 0.0263
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Fig. 3. Plot of frequency (Hz) and loss factor of a short mild steel tank: (a) frequencies of half-filled; (b) loss factors of half-filled;

(c) frequencies of fully filled; (d) loss factors of fully filled: —’— tc/tf ¼ 0.5; —K— tc/tf ¼ 1.0; —m— tc/tf ¼ 2.0; —.— tc/tf ¼ 3.0;

—~— tc/tf ¼ 5.0; —b— tc/tf ¼ 10.0.
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modes the bending effect will be more predominant. Hence as the tc/tf ratio increases, apparently the
bending rigidity also increases considerably and such an effect is seen at higher modes. Consequently, the
frequencies of the higher modes increase when the tc/tf ratio increases. At lower modes mass effects are more
predominant when compared to stiffness effects, hence the frequencies decrease at lower modes. The
circumferential mode at which the lowest frequency occurs shifts toward lower mode numbers as the tc/tf ratio
increases.

This is conceived as the increase of tc/tf ratio gives more bending rigidity. In case of half-filled and fully
filled shells, the same trend is observed. However, the frequencies of half-filled and fully filled shells are
considerably different as the added mass effect of the fluid is distinct in both the cases. The frequencies of fully
filled and half-filled shells are almost constant for all tc/tf ratios at lower circumferential modes. However, the
effect of tc/tf ratio on the frequency is more pronounced at higher modes.

Fig. 3 also shows that the variation of loss factor versus circumferential mode number of a short
half-filled and fully filled shells. The loss factor increases for half-filled and fully filled shells as the tc/tf ratio
increases. The loss factor increases rapidly up to certain mode number and it becomes almost constant at
higher modes. This phenomenon substantiates the fact that passive control is more effective at lower
circumferential modes.

Fig. 4 shows the plot of the frequency and loss factor versus circumferential mode number of tall half-filled
and fully filled shells. The trend observed is same as in the case of short mild steel tank.

4.1.3. Studies on orthotropic short and tall shell

This section presents the frequencies and loss factors of a tall shell with facings made of Kevlar/Epoxy
material. Fig. 5 shows the variation of natural frequency and loss factor of a tall shell made of Kevlar/Epoxy
material with axial fibre orientation (fibre angle 01). The figure shows the results of half-filled and fully filled
shells for various values of tc/tf ratios. It is observed that there is a little change in frequency of half-filled and
fully filled shell at lower circumferential modes as the core to facing thickness ratio increases. Frequency of
fluid-filled shells increases at higher modes thus indicating that increase of tc/tf ratio has highly appreciable
influence on the stiffness of the shell. The damping behaviour of tall shell, as is seen from the figures is that in
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general at lower circumferential mode number there is no significant change in damping values. This is because
of the fact that the membrane effect is more predominant at lower modes and does not appreciably increase
the damping of the system.

Fig. 6 shows the plot of frequency and loss factor of a tall Kevlar/Epoxy shell with circumferential fibre
orientation (fibre angle 901). The frequency behaviour of 901 fibre-oriented shell is similar to that of 01 fibre-
oriented shells. However, the damping of lower circumferential modes of circumferentially fibre-oriented shell
is higher compared to axial fibre-oriented shell. A similar trend in the variation of natural frequency and loss
factor of a short shell made of Kevlar/Epoxy material with axial fibre orientation (fibre angle 01) was
observed. The damping values of both half-filled and fully filled shell decreases for fist few circumferential
modes and then increases.

The frequency behaviour of short Kevlar/Epoxy shell with 901 fibre orientation shell is similar to that of 01
fibre-oriented shell. However, there is a steep rise in the loss factor with increase in circumferential mode
number. However, results of short Kevlar/Epoxy are not presented because of space limitations.
4.1.4. Comparison of frequencies and loss factors for different composite materials with axial fibre orientation

Tables 3 and 4 give the variation of frequency and loss factor of a short shell with fibre orientation in axial
direction under fluid-filled condition for various composite materials. Damping of fluid-filled shells is higher at
first bending mode especially when core to facing thickness ratio is five. Hence, the addition of viscoelastic
damping may have better effect in fluid-filled shells. In addition, Graphite/Epoxy shells in general seem to
have higher damping. Tables 5 and 6 give the variation of frequency and loss factor for different materials
under fluid-filled condition for tall tank with axial fibre direction. It is seen that damping at higher modes are
quite considerable in case of tall shells.
4.1.5. Frequencies and loss factors of the cylindrical shells for higher axial modes

In the previous sections, frequencies and loss factors of cylindrical shell are presented for various
circumferential modes corresponding to first axial mode only. This section deals with some typical results for
higher axial modes of the cylindrical shell with tc/tf ¼ 1. Fig. 7 shows the variation of frequency and loss
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Fig. 5. Plot of frequency (Hz) and loss factor of a long Kevlar/Epoxy tank with fibre angle 01: (a) frequencies of half-filled; (b) loss

factors of half-filled; (c) frequencies of fully filled; (d) loss factors of fully filled: —’— tc/tf ¼ 0.5; —K— tc/tf ¼ 1.0; —m— tc/tf ¼ 2.0;

—.— tc/tf ¼ 3.0; —~— tc/tf ¼ 5.0; —b— tc/tf ¼ 10.0.
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factor of a short mild steel cylindrical shell in both half-filled and fully filled conditions with tc/tf ¼ 1 for
higher axial modes. For the first axial mode decreasing–increasing trend of frequency versus circumferential
mode number is observed. It can be seen from the figure that the variation of frequency along circumferential
mode number reduces as the axial mode number increases. The frequency decreases continuously up to
m ¼ 20 for the axial modes n ¼ 3 and 5. Loss factor of cylindrical shell increases with increase in axial mode
number at lower circumferential modes. But at higher circumferential modes, loss factor decreases with
increase in axial mode number. Loss factor of the shell does not vary with circumferential mode number for
higher axial modes. For axial mode n ¼ 1, loss factor of the shell decreases at mode m ¼ 1 and then increases.
But for other axial modes, loss factor increases continuously with increase in circumferential mode number.

Variation of frequency and loss factor of a tall mild steel cylindrical shell for higher axial modes
with tc/tf ¼ 1 is shown in Fig. 8. The fall in frequency with the increase in circumferential mode number reduces
in case of tall shell also, as the axial mode number increases. Loss factors of shell increase with increase in axial
mode number for lower circumferential modes and it is vice-versa at higher circumferential modes.

4.1.6. Influence of different boundary conditions

In order to ascertain the validity of the proposed method for other classical boundary conditions like
clamped–clamped (CC), clamped–free (CF) and simply supported (SS), a limited study is done. This study
gives the influence of boundary conditions for fluid-filled structures. Tables 7 and 8 show the comparison of
frequencies and loss factors of short fluid-filled mild steel cylindrical shell with CC, SS and CF boundary
conditions for the first axial mode. Comparison of frequencies and loss factors of a tall fully filled mild steel
cylindrical shell with CC, SS and CF boundary conditions for the first axial mode is listed in Tables 9 and 10.

The difference in the values of both frequencies and loss factors obtained for shells with different
boundary conditions is reckoned. However in the case of short fluid-filled shells, even though there
is a considerable difference in frequencies and loss factors at lower circumferential modes between
different boundary conditions, the difference becomes less at higher circumferential modes. In the case
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Fig. 6. Plot of frequency (Hz) and loss factor of a long Kevlar/Epoxy tank with fibre angle 901: (a) frequencies of half-filled; (b) loss factors

of half-filled; (c) frequencies of fully filled; (d) loss factors of fully filled: —’— tc/tf ¼ 0.5; —K— tc/tf ¼ 1.0; —m— tc/tf ¼ 2.0;

—.— tc/tf ¼ 3.0; —~— tc/tf ¼ 5.0; —b— tc/tf ¼ 10.0.

Table 3

Comparison of frequencies (Hz) of different composite materials of a short fully-filled cylindrical shell with 01 fibre angle

m Boron/Epoxy Glass/Epoxy Graphite/Epoxy Kevlar/Epoxy

tc/tf ¼ 1 tc/tf ¼ 5 tc/tf ¼ 1 tc/tf ¼ 5 tc/tf ¼ 1 tc/tf ¼ 5 tc/tf ¼ 1 tc/tf ¼ 5

1 1.881 1.892 1.337 1.359 1.588 1.610 1.086 1.112

2 1.549 1.555 1.196 1.207 1.490 1.503 0.944 0.962

3 1.269 1.276 1.016 1.024 1.319 1.329 0.797 0.814

4 1.074 1.089 0.865 0.875 1.158 1.170 0.683 0.704

5 0.937 0.966 0.746 0.764 1.025 1.047 0.600 0.629

6 0.838 0.896 0.653 0.691 0.921 0.960 0.538 0.584

7 0.766 0.872 0.581 0.655 0.838 0.910 0.491 0.565

8 0.717 0.896 0.528 0.659 0.775 0.898 0.458 0.576

9 0.690 0.965 0.493 0.704 0.729 0.926 0.437 0.615

10 0.683 1.076 0.477 0.787 0.701 0.994 0.428 0.684
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of a tall shell, the loss factors obtained for different boundary conditions are more or less same.
In general, the simply supported shell seems to have higher damping compared to the CF shell and the
CC shell.

4.2. Submerged viscoelastic cylindrical shell

4.2.1. Validation

As explained in Section 3 the present methodology can be extended to submerged shells where subsequent
change in spatial velocity potential is made by discarding the first kind of Bessel function In, as it must be
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Table 4

Comparison of loss factors for different composite materials of a short fully filled cylindrical shell with 01 fibre angle

m Boron/Epoxy Glass/Epoxy Graphite/Epoxy Kevlar/Epoxy

tc/tf ¼ 1 tc/tf ¼ 5 tc/tf ¼ 1 tc/tf ¼ 5 tc/tf ¼ 1 tc/tf ¼ 5 tc/tf ¼ 1 tc/tf ¼ 5

1 0.0039 0.0106 0.0034 0.0122 0.0058 0.0158 0.0054 0.0187

2 0.0027 0.0092 0.0021 0.0087 0.0038 0.0124 0.0036 0.0151

3 0.0026 0.0107 0.0016 0.0077 0.0029 0.0115 0.0031 0.0151

4 0.0030 0.0137 0.0015 0.0081 0.0028 0.0127 0.0032 0.0172

5 0.0037 0.0179 0.0016 0.0094 0.0031 0.0151 0.0035 0.0200

6 0.0046 0.0237 0.0017 0.0116 0.0036 0.0187 0.0040 0.0230

7 0.0056 0.0319 0.0019 0.0156 0.0042 0.0238 0.0045 0.0262

8 0.0069 0.0430 0.0024 0.0220 0.0050 0.0307 0.0051 0.0295

9 0.0087 0.0566 0.0031 0.0304 0.0060 0.0395 0.0057 0.0332

10 0.0113 0.0713 0.0045 0.0397 0.0074 0.0498 0.0064 0.0375

Table 5

Comparison of frequencies (Hz) for different composite materials of a long fully filled cylindrical shell with 00 fibre angle

m Boron/Epoxy Glass/Epoxy Graphite/Epoxy Kevlar/Epoxy

tc/tf ¼ 1 tc/tf ¼ 5 tc/tf ¼ 1 tc/tf ¼ 5 tc/tf ¼ 1 tc/tf ¼ 5 tc/tf ¼ 1 tc/tf ¼ 5

1 1.764 1.745 1.424 1.408 1.924 1.907 1.125 1.112

2 1.124 1.123 0.845 0.815 1.245 1.236 0.725 0.723

3 0.836 0.906 0.536 0.594 0.897 0.936 0.536 0.570

4 0.705 1.012 0.425 0.684 0.711 0.928 0.435 0.623

5 0.735 1.398 0.464 1.018 0.674 1.209 0.442 0.876

6 0.927 1.962 0.622 1.486 0.784 1.687 0.562 1.236

7 1.254 2.652 0.863 2.051 1.021 2.288 0.725 1.772

8 1.648 3.245 1.142 2.703 1.347 2.978 0.965 2.356

9 2.125 4.175 1.522 3.431 1.744 3.741 1.277 3.026

10 2.669 5.036 1.933 4.228 2.203 4.564 1.625 3.768

Table 6

Comparison of loss factors for different materials of a long fully filled cylindrical shell with 01 fibre angle

m Boron/Epoxy Glass/Epoxy Graphite/Epoxy Kevlar/Epoxy

tc/tf ¼ 1 tc/tf ¼ 5 tc/tf ¼ 1 tc/tf ¼ 5 tc/tf ¼ 1 tc/tf ¼ 5 tc/tf ¼ 1 tc/tf ¼ 5

1 0.00033 0.00170 0.00036 0.00191 0.00031 0.00154 0.00071 0.00368

2 0.00045 0.00266 0.00032 0.00186 0.00033 0.00195 0.00072 0.00408

3 0.00081 0.01160 0.00042 0.00710 0.00048 0.00593 0.00079 0.00662

4 0.00374 0.04696 0.00234 0.02956 0.00168 0.02653 0.00148 0.01861

5 0.01373 0.08884 0.00825 0.05246 0.00682 0.05848 0.00439 0.03607

6 0.02807 0.12144 0.01564 0.07269 0.01618 0.08586 0.00923 0.05246

7 0.04155 0.14766 0.02165 0.09235 0.02588 0.10896 0.01453 0.06831

8 0.05364 0.16970 0.02789 0.11169 0.03476 0.12983 0.01901 0.08423

9 0.06522 0.18881 0.03472 0.12997 0.04329 0.14903 0.02392 0.10003

10 0.07678 0.20495 0.04196 0.14682 0.05190 0.16639 0.02910 0.11533
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regular at extreme radius. Table 11 lists the natural frequencies—of a submerged shell whose dimensions are
R ¼ 0.175, L ¼ 0.664 and t ¼ 0.001m which is simply supported at both ends—obtained by the present
approach and from the work of Amabili [7]. The correlation observed is good.
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Fig. 8. Frequencies (Hz) and loss factors of a long mild steel cylindrical shell for higher axial modes for tc/tf ¼ 1: (a) frequencies of

half-filled; (b) loss factors of half-filled; (c) frequencies of fully filled; (d) loss factors of fully filled: —’— n ¼ 1; —K— n ¼ 2; —m—

n ¼ 3; —.— n ¼ 5.
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The present methodology is also validated by selecting a circular cylindrical shell with different
dimensions, which is clamped at one end while other end is free. The shell is made of stainless steel
and has a radius of 0.07654m, length of 1.35m, and wall thickness of 0.002286m. The material
properties of the shell are as follows. Young’s modulus is 200� 109Nm�2, Poisson’s ratio is 0.3, and
mass density is 7850 kgm�3. The density of liquid in the shell is 1000 kgm�3. The natural frequencies
of the shell are calculated by the present method and are compared with those reported by Maguire [8],
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Table 7

Comparison of frequencies (Hz) of a fluid-filled short mild shell for different boundary conditions

m First axial mode (n ¼ 1)

CC SS CF

1 7.0392 6.6014 6.2453

2 7.0250 6.7990 5.2110

3 6.6525 6.5143 4.1497

4 6.1376 5.9005 3.3181

5 5.6204 5.1874 2.6931

6 5.1500 4.5111 2.2286

7 4.7366 3.9239 1.8925

8 4.3784 3.4370 1.6650

9 4.0711 3.0467 1.5344

10 3.8116 2.7459 1.4908

Table 8

Comparison of loss factors of a fluid-filled short mild shell for different boundary conditions

m First axial mode (n ¼ 1)

CC SS CF

1 0.00088 0.00100 0.00072

2 0.00073 0.00067 0.00047

3 0.00072 0.00039 0.00044

4 0.00087 0.00028 0.00056

5 0.00118 0.00040 0.00100

6 0.00174 0.00086 0.00241

7 0.00270 0.00197 0.00630

8 0.00433 0.00434 0.01517

9 0.00699 0.00893 0.03135

10 0.01119 0.01693 0.05462

Table 9

Comparison of frequencies (Hz) of a fluid-filled long mild shell for different boundary conditions

m First axial mode (n ¼ 1)

CC SS CF

1 10.6401 10.0784 12.2475

2 7.4579 5.5629 5.2494

3 5.4537 3.3783 2.9431

4 4.1760 2.3842 2.3791

5 3.4213 2.0581 2.7173

6 3.1114 2.1926 3.4005

7 3.1857 2.6175 4.1566

8 3.5561 3.2138 4.9449

9 4.1339 3.9240 5.7960

10 4.8581 4.7246 6.7254
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Hoon and Lee [9]. The comparisons are listed in Table 12. The fluid surrounding the shell is bounded
by a reservoir, which has an axially varying radius in the finite-element model of Maguire1. However, in
the experimental work of Maguire2 and also in the present approach, it is assumed that the shell is
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Table 10

Comparison of loss factors of a fluid-filled long mild shell for different boundary conditions

m First axial mode (n ¼ 1)

CC SS CF

1 0.00004 0.00002 0.00002

2 0.00010 0.00009 0.00025

3 0.00076 0.00165 0.00838

4 0.00515 0.01493 0.05736

5 0.02207 0.05931 0.11850

6 0.05985 0.11850 0.14660

7 0.10810 0.15830 0.15651

8 0.14600 0.17731 0.16365

9 0.16709 0.18433 0.16870

10 0.17571 0.18494 0.17095

Table 11

Comparison of the natural frequencies (Hz) of a liquid surrounded shell

m Amabili and Dalpiaz [7] Present approach

Frequency (Hz) Frequency (Hz)

1 94.80 109.13

2 135.99 137.07

3 236.00 228.27

4 528.36 493.35

Table 12

Comparison of natural frequencies of a shell surrounded with 90% of fluid

n Partially liquid-surrounded shell (90% liquid level)

Method m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4

1 Maguire1 42.2 137.7 389.9 824.2

Maguire2 — 160.0 479.9 —

Hoon and Lee [9] 56.6 168.7 479.7 987.3

Present study 58.1 171.7 487.4 989.3

2 Maguire1 303.0 200.1 457.7 859.3

Maguire2 — 205.5 531.9 —

Hoon and Lee [9] 308.1 215.4 502.6 1012.8

Present study 315.5 225.4 511.1 1012.3

3 Maguire1 892.0 404.7 576.2 942.5

Maguire2 — 330.2 540.0 —

Hoon and Lee [9] 756.8 345.6 557.6 1056.9

Present study 773.3 360.8 571.1 1048.2

4 Maguire1 1354.0 618.3 736.8 1081.0

Maguire2 — 545.9 618.7 —

Hoon and Lee [9] 1295.3 569.6 643.3 1124.0

Present study 1323.2 593.5 671.7 1098.2

5 Maguire1 1962.0 959.8 804.8 1262.0

Maguire2 — — 719.5 —

Hoon and Lee [9] 1876.6 856.9 739.5 1214.9

Present study 1921.4 899.2 780.4 1195.5
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surrounded with a radially infinite exterior liquid. This difference might result in small discrepancy
between the natural frequencies obtained by the present method and the finite-element results of Maguire1.
It is found that the natural frequencies of the liquid-surrounded shell with the assumption of infinite
fluid domain (by Hoon and Lee) and from the present method agree well with the experimental results
of Maguire2.
4.2.2. Studies on submerged isotropic short and long shells

Studies are carried out to analyse submerged isotropic shells for free vibration and damping characteristics.
The dimensions of a short cylindrical shell are R ¼ 18.29, L ¼ 12.2, t ¼ 0.0254 and long shell dimensions are
R ¼ 7.34, L ¼ 21.96, t ¼ 0.0254m. Fig. 9 illustrates the natural frequencies and loss factors of a short mild
steel tank when surrounded by water. The frequency behaviour and loss factor is observed to be similar to
fluid-filled viscoelastic shell (see Section 4.1.2). In case of half-surrounded shells, for the first few
circumferential modes frequencies decrease with the increase in the tc/tf ratio. This is mainly because the
mass effects dominate in the case of shell vibration. Lowest frequency occurs when mass effects and bending
effects are equal. Once the lowest frequency is crossed, then the frequency increases with increase in tc/tf ratio,
as bending effects are predominant at higher circumferential modes. However, when compared to fluid-filled
shell, submerged shell’s bending mode frequency is higher. This is due the effect of hoop stress, which would
make the shell stiffer in bending modes. There was no significant difference in the case of loss factor of half-
surrounded shell and half-filled shell; however, loss factor of fully surrounded shell is slightly higher than that
of fully filled shell.

Fig. 10 shows the natural frequencies and loss factor of a typical long shell when it is surrounded with water.
The frequency behaviour observed is similar to long shells (refer Section 4.1.2.). However, the loss factors of
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Fig. 9. Plot of frequency (Hz) and loss factor of a short mild steel fluid surrounded shell: (a) frequencies of half-filled; (b) loss

factors of half-filled; (c) frequencies of fully filled; (d) loss factors of fully filled: —’— tc/tf ¼ 0.5; —K— tc/tf ¼ 1.0; —m— tc/tf ¼ 2.0;
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Fig. 10. Plot of frequency (Hz) and loss factor of a long mild steel fluid surrounded shell: (a) frequencies of half-filled; (b) loss

factors of half-filled; (c) frequencies of fully filled; (d) loss factors of fully filled: —’— tc/tf ¼ 0.5; —K— tc/tf ¼ 1.0; —m— tc/tf ¼ 2.0;
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B. Vamsi Krishna, N. Ganesan / Journal of Sound and Vibration 303 (2007) 575–595592
both half-surrounded and fully surrounded are slightly higher than the half-filled and fully filled cylindrical
shells respectively.

4.2.3. Orthotropic submerged shells

Fig. 11 shows the natural frequencies and loss factor of a short Kevlar/Epoxy shell with axial fibre
orientation and surrounded with fluid. It is seen that the fall in frequency due to the external fluid effect in
composite shells are much higher compared to composite fluid-filled cylindrical shells. In most of the cases
damping in fluid surrounded shells are marginally higher than that of fluid-filled shells for higher
circumferential modes. Damping of fluid-filled shells is higher for axisymmetric mode and first bending mode
especially when compared to fluid surrounded shell.

Fig. 12 shows the natural frequencies and loss factor of a long Kevlar/Epoxy shell with axial
fibre orientation and surrounded with fluid. The trend observed is similar to that of Fig. 11. It is also
observed that frequencies of short Glass/Epoxy shell with fluid surrounded and fluid-filled shell are in the same
range except for the higher circumferential modes where fluid surrounded shell has higher natural frequency.
In the case of loss factors, the fluid surrounded shell seems to have higher amount of damping throughout the
range. The above results and comments hold good also for composite shell with circumferential fibre
orientation.

5. Partially liquid-filled and partially submerged shells

Studies are extended to both partially liquid-filled and partially submerged shells by algebraically adding
the added-masses of submerged and fluid-filled cases, and results are compared with the only work found
in this area by Chiba [4] in Table 13. The shell is clamped at one end and other end is free. Shell is made
up of polyster film with the geometrical parameter z ¼ L2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2
p

=Rt ¼ 502. The liquid is water. The radius of
shell is R ¼ 0.1m, the thickness is t ¼ 0.244mm, the length is L ¼ 0.1131m, and the radius of the outer
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Fig. 11. Plot of frequency (Hz) and loss factor of a short Kevlar/Epoxy fluid surrounded shell with 01 fibre orientation: (a) frequencies

of half-filled; (b) loss factors of half-filled; (c) frequencies of fully filled; (d) loss factors of fully filled: —’— tc/tf ¼ 0.5; —K— tc/tf ¼ 1.0;

—m— tc/tf ¼ 2.0; —.— tc/tf ¼ 3.0; —~— tc/tf ¼ 5.0; —b— tc/tf ¼ 10.0.
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cylinder is R0 ¼ 0.195m. A good correlation in the trend for the variation of frequency is observed.
However, the discrepancy at higher modes may be due to the fact that the results from the present study are
obtained for infinite liquid domain where as the results reported by Chiba [4] are for finite liquid domain.
Studies can be extended to fluid-filled as well as fluid surrounded viscoelastic shells for different boundary
conditions.

6. Conclusions

A generalised method is proposed in this paper for the frequency analysis of conventional viscoelastic fluid-
filled or fluid surrounded shells. The method consists of treating fluid domain with Bessel function approach
and shell domain using finite-element discretisation. The present approach obviates the discretisation of liquid
domain thus reducing the computation time. The proposed method overcomes most of the limitations suffered
by adopting approaches suggested in the literature. Results of frequency analysis obtained using this method
correlate very well with those obtained using other approaches found in the literature for solving diverse
fluid–shell problems. Hence, it is claimed that the present approach is numerically robust and can be easily
used for different configurations—fluid-filled or submerged, any amount of fluid filling, boundary condition—
of fluid–shell interaction problems.

In the present paper, numerical results are presented for isotropic as well as orthotropic viscoelastic shell
structures. The response of the viscoelastic fluid-filled or fluid-surrounded shells at resonance will be lower
compared to conventional mild steel systems as damping present in the system is higher. Observing that the
loss factors—a metric that is proportional to the amount of damping present in the fluid–shell system—for
these shell structures are substantially high, one could confidently draw the above conclusion. In case of
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Fig. 12. Plot of frequency (Hz) and loss factor of a long Kevlar/Epoxy fluid surrounded shell with 01 fibre orientation: (a) frequencies

of half-filled; (b) loss factors of half-filled; (c) frequencies of fully filled; (d) loss factors of fully filled: —’— tc/tf ¼ 0.5; —K— tc/tf ¼ 1.0;

—m— tc/tf ¼ 2.0; —.— tc/tf ¼ 3.0; —~— tc/tf ¼ 5.0; —b— tc/tf ¼ 10.0.

Table 13

Natural frequencies (Hz) of completely filled and completely submerged shell polyster film with the geometrical parameter z ¼ 502

Circumferential mode Present approach Chiba [4]

1 140.96 140

2 80.55 82

3 50.89 58

4 34.79 40

5 25.46 31

The inner and outer radii of shell are R ¼ 0.1m, R0 ¼ 0.195m, the thickness is t ¼ 0.244mm, the length is L ¼ 0.1131m.
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orthotropic shells, the effect of fibre orientation is examined. It is found that for shells with axial fibre
orientation the added mass effect of fluid is less for lower circumferential modes and increases for higher
circumferential modes. In case of shells with circumferential fibre orientation the added mass effect of fluid is
more predominant than shells with axial fibre orientation; this observation holds good for both fluid-
surrounded and fluid-filled shells. In general, fluid-filled shells have slightly higher natural frequency when
compared to fluid-surrounded shells.
Appendix A

Material properties used in the present study (see Table A1).
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Table A1

Material properties used in the present study

i. PVC

E1 ¼ E2 ¼ E3 ¼ (2.3E7, i.0.782E7)N/m2, n12 ¼ n13 ¼ n23 ¼ 0.34, r ¼ 1340 kg/m3

ii. Mild steel

E1 ¼ E2 ¼ E3 ¼ 2.04E11N/m2, n12 ¼ n13 ¼ n23 ¼ 0.3 and r ¼ 7800 kg/m3

iii. Glass/Epoxy

E1 ¼ 38.60E9, E2 ¼ 8.27E9, G12 ¼ 4.14E9N/m2, n12 ¼ 0.26, r ¼ 1810kg/m3, E3 ¼ E2, G13 ¼ G12, G23 ¼ G12,

n13 ¼ n12,n23 ¼ n12

iv. Boron/Epoxy

E1 ¼ 204E9, E2 ¼ 18.3E9, G12 ¼ 5.5E9N/m2, n12 ¼ 0.23, r ¼ 2000 kg/m3, E3 ¼ E2, G13 ¼ G12, G23 ¼ G12, n13 ¼ n12, n23 ¼ n12

v. Kevlar/Epoxy

E1 ¼ 76E9, E2 ¼ 5.5E9, G12 ¼ 2.3E9N/m2, n12 ¼ 0.34, r ¼ 1460 kg/m3, E3 ¼ E2, G13 ¼ G12, G23 ¼ G12, n13 ¼ n12, n23 ¼ n12

vi. Graphite/Epoxy

E1 ¼ 184.5E9, E2 ¼ 10.91E9, G12 ¼ 7.31E9N/m2, n12 ¼ 0.28, r ¼ 1600kg/m3, E3 ¼ E2, G13 ¼ G12, G23 ¼ G12, n13 ¼ n12,
n23 ¼ n12
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